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It is well-known that sound generated by localized sources embedded in a jet un-
dergoes refraction as the acoustic waves propagate through the jet mean flow. For
isothermal or hot jets, the effect of refraction causes the deflection of the radiated
sound waves away from the jet flow direction. This gives rise to a cone of silence
around the jet axis where there is a significant reduction in the radiated sound in-
tensity. In this work, the mean flow refraction problem is investigated through the
use of the reciprocity principle. Instead of the direct source Green’s function, the
adjoint Green’s function with the source and observation points interchanged is used
to quantify the effect of mean flow on sound radiation. One advantage of the adjoint
Green’s function is that the Green’s functions for all the source locations in the jet
radiating to a given direction in the far field can be obtained in a single calculation.
This provides great savings in computational effort. Another advantage of the adjoint
Green’s function is that there is no singularity in the jet flow so that the problem can
be solved numerically with axial as well as radial mean flow gradients included in a
fairly straightforward manner. Extensive numerical computations have been carried
out for realistic jet flow profiles with and without exercising the locally parallel flow
approximation. It is concluded that the locally parallel flow approximation is valid as
long as the direction of radiation is outside the cone of silence.

1. Introduction
It is well-known that the directivity of sound generated by a localized source inside

a jet is significantly modified by the presence of the mean flow. Figure 1 illustrates the
refraction of a ray of sound emitted by a point source S located in the mixing layer
of a jet. To see why the ray is bent, one needs only to consider the propagation of
the wave front AB. The point A moves at a speed equal to the local sound speed plus
the local flow velocity of the jet. So does the point B. If the jet is nearly isothermal,
then the speed of sound is the same at A and B. But the flow velocity at B is higher.
As a result, as the wave front propagates it becomes tilted as A′B′. Obviously, this
effect of refraction is even more pronounced for hot jets. In this case, the sound
speed at B is higher than that at A. One of the important consequences of mean
flow refraction is that less sound can be radiated in the direction of the jet flow. This
creates a relatively quiet region around the jet axis commonly known as the ‘cone of
silence’. Experimentally, the presence of a cone of silence has been demonstrated by
Atvars, Schubert & Ribner (1965). On the other hand, if the jet is very cold, the same
argument would lead to the conclusion that sound rays would be bent toward the jet
axis. This, in turn, leads to a large increase in sound intensity there. Grande (1965)
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Figure 1. Schematic diagram showing the refraction of a ray of sound emitted by a localized
source at S in a jet.

carried out such an experiment using a monopole source in a cold nitrogen jet. His
measurements confirmed a very significant increase in the radiated sound intensity
around the axial direction of the jet.

In the literature, there have been numerous investigations on the effects of mean flow
refraction on the radiation of sound from localized noise sources in jets. Because of
entrainment, the mean flow of a jet diverges in the axial direction. Thus, there are axial
as well as radial gradients to be considered, although the former is much smaller than
the latter. Because of this complexity in the mean flow profile, so far only approximate
solutions are available. To render the problem tractable analytically, Mani (1976a, b)
replaced the jet by a plug flow. In his model, the jet flow was assumed to be parallel
and bounded by a vortex sheet. Goldstein (1975, 1976) considered parallel flow
axisymmetric jets. He developed Green’s functions for multipole sources valid at low
frequency. Balsa (1976) and Goldstein (1982), on the other hand, investigated the
high-frequency Green’s function for parallel but not necessarily axisymmetric jets.
Tester & Morfey (1976) and Balsa (1977) used a parallel flow model to construct
approximate point source solutions of the flow equations in both the low- and high-
frequency limits. At very high frequency, the acoustic wavelength is short. This allows
the treatment of sound propagation by the method of geometric acoustics. Initial work
was done by Schubert (1972). A much more general theory was later formulated by
Durbin (1983a, b). Recently, Khavaran & Kresja (1993, 1994) and Khavaran (1996)
applied this method to non-parallel non-axisymmetric jets. The approximate solutions
mentioned above are generally useful within the intended range of validity. However,
it is important to point out that almost all the approximate solutions fail near and
inside the cone of silence. This is not surprising, for it is in the direction of the cone
of silence that the effect of refraction is the largest and that both the axial and radial
gradients of the mean flow must be taken into account.

Inside a jet, fine-scale turbulence is distributed over nearly its entire volume. Each
local volume of fine-scale turbulence acts as an independent noise source. Thus, to
find the noise radiated to a given direction in the far field, it is necessary to sum the
contribution from each local volume of the jet as illustrated in figure 2. This requires
the determination of the flow effects for each of these individual volume sources. This
is an extremely laborious and time consuming process.

The primary objective of this investigation is to develop an efficient and accurate
method for the computation of the flow refraction effect in jets with realistic mean
flow profiles. To accomplish this, we will first introduce the idea of reciprocity
and recast the refraction problem into a scattering/radiation (the adjoint) problem.
The scattering/radiation problem is then solved by a computational aeroacoustics
method.



Mean flow refraction effects on sound radiated from a jet 151

Direction of
radiation

H

Jet
flow

Sources

Nozzle

Figure 2. Distributed noise sources contributing to the radiation in a given direction.
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Figure 3. Monopole acoustic source radiation. (a) Source at xs, observer at x0.
(b) Source at x0, observer at xs.

In many branches of mechanics, the reciprocity principle applies. However, the
existence of a reciprocity principle has not been fully exploited in fluid mechanics and
acoustics. Notable exceptions are the works of Cho (1980), Howe (1975, 1978, 1981)
and Dowling (1983) in acoustics; Roberts (1960), Eckhaus (1965) and Chandrasekhar
(1989) in hydrodynamic stability; and Hill (1995) in receptivity problems. To fix
ideas, consider a time-periodic point source of sound located at xs as shown in figure
3(a). Let G(x0, xs, ω) be the pressure associated with the sound field measured by
an observer at x0. Mathematically, G(x0, xs, ω) is the Green’s function of the wave
equation and ω is the angular frequency of oscillation. (Note: we will use the notation
that the first argument of the Green’s function is the location of the observer and the
second argument is the location of the source.) Now let us interchange the location
of the sound source and the observer as shown in figure 3(b). Clearly, by symmetry
the pressure measured by the observer, now at xs while the source is at x0, is the same
as before. That is,

G (x0, xs, ω) = G (xs, x0, ω) . (1)

Equation (1) is simply the statement that the Green’s function G (x0, xs, ω) is self-
adjoint or symmetric.

In the case of a sound source located inside a jet flow and an observer in the far
field as illustrated in figure 4(a), the problem is not self-adjoint. This is because of the
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Figure 4. (a) The direct sound radiation problem. (b) The adjoint problem – a sound
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Figure 5. Sound scattering problem involving incident plane acoustic waves and adjoint jet flow.

presence of the jet mean flow. However, as we shall show in § 2 and § 3, it is possible
to develop an adjoint problem with an adjoint mean flow such that the Green’s
functions with the locations of the source and observer interchanged are equal. That
is, if Ga(x, xs, ω) is the adjoint Green’s function of figure 4(b), then

G (x0, xs, ω) = Ga (xs, x0, ω) . (2)

Clearly the adjoint problem is a sound scattering problem by the adjoint jet flow.
For an observer at x0, located in the far field of the original problem, the sound
waves emitted by the source in the adjoint problem are plane waves by the time
they reach the vicinity of the jet. This is illustrated in figure 5. Now if the adjoint
sound scattering problem is solved, then Ga (xs, x0, ω) is known for all xs located in
the jet. (Note: the point source is located at x0 for the adjoint problem.) But by
(2) this is equal to G (x0, xs, ω). Thus, the direct radiation problem (radiate in the
direction x0) from all possible noise source locations xs inside the jet is found in
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one single calculation. In this way, the laborious process of solving for G (x0, xs, ω)
repeatedly by changing xs over the entire volume of the jet is completely circum-
vented. For a specific example involving multiple point sources in a jet illustrating
the enormous savings in computation by using the adjoint Green’s function, see
Appendix C.

The rest of this paper is as follows. In § 2, the adjoint Green’s function problem
for locally parallel flow jets is formulated and solved. In § 3, the case of non-parallel
flow jets is considered. The adjoint problem is recast into a form suitable for a time
marching numerical solution. Details about the numerical method are provided in
§ 4. Validation of the numerical solution and a parametric study of non-parallel flow
effects are given in § 5. Finally, possible extension of the present method is discussed
in § 6 of this paper.

2. Adjoint Green’s function for locally parallel jet flows
In this section, we will formulate and solve the adjoint Green’s function problem

for locally parallel flow jets. The more general case of realistic divergent jets will be
considered in the next section.

2.1. Formulation of the adjoint problem

Consider a parallel flow jet with the mean flow in the x-direction. We will denote
the mean flow variables by an overbar. The mean flow velocity, pressure and den-
sity are v = (u (y, z) , 0, 0), p = p∞ (constant), ρ = ρ (y, z). On starting with the
linearized Euler equations, it is straightforward to find, by eliminating all other vari-
ables in favour of perturbation pressure p, a single third-order partial differential
equation for p. Thus, by incorporating a point source term at xs with time depen-
dence of e−iωt on the right-hand side of the equation (i.e. (1/2π)δ(x − xs) e−iωt; the
factor 1/2π is added so that upon integrating over ω the time part becomes δ(t)),
the equation for the pressure Green’s function is found. The equation for the spa-
tial part of the Green’s function, G (x, xs, ω), is obtained by factoring out e−iωt. It
is[(
−iω + u

∂

∂x

)3
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G (x, xs, ω) =

1

2π
δ (x− xs) , (3)

where γ is the ratio of the specific heats of the gas.
Now if we multiply (3) by Ga (x, x0, ω) and integrate over all space, we obtain, after

integration by parts and the use of the Green’s theorem,∫∫∫
G (x, xs, ω)
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Ga (x, x0, ω) dx dy dz =

1

2π
Ga (xs, x0, ω) . (4)



154 C. K. W. Tam and L. Auriault

At this time, we will specify Ga (x, x0, ω) to be the adjoint Green’s function satisfying
the adjoint equation,{

−
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Ga (x, x0, ω) =

1

2π
δ (x− x0) . (5)

Substituting (5) into (4), we find the reciprocity relation

G (x0, xs, ω) = Ga (xs, x0, ω) . (6)

It is straightforward to see from (5) that the jet flow direction of the adjoint problem
is opposite to that of the direct radiation problem.

It will be assumed that x0, the direction of radiation for the direct problem and the
source point for the adjoint problem, is in the far field away from the jet. Outside the
jet, we have u = 0, p = p∞ and ρ = ρ∞. Thus (5) simplifies to

∇2Ga (x, x0, ω) +
ω2

a2
∞
Ga (x, x0, ω) =

1

2πiωa2
∞
δ (x− x0) , (7)

where a∞ = (γp∞/ρ∞)1/2 is the ambient sound speed. The solution of (7), which
satisfies the outgoing wave condition, is

Ga (x, x0, ω) =
i

8π2ωa2
∞

eiω|x−x0|/a

|x− x0|
(8)

where |x− x0| is the distance between x and x0.

For convenience, we will use a spherical coordinate system centred at the jet axis
with the polar axis coinciding with the x-direction; R is the radial coordinate, Θ
denotes the polar angle and φ the azimuthal angle measured from the (x, y)-plane.
Without loss of generality, let (R,Θ, φ = 0) be the spherical coordinates of x0. For
very large R, the acoustic waves of the adjoint problem, when reaching the vicinity
of the jet, are in the form of plane waves. Therefore, in the limit R → ∞, (8)
becomes

Ga (x, x0, ω) =
i

8π2ωa2
∞

exp

(
−i

ω

a∞
(x cosΘ + y sinΘ) + i

ω

a∞
R

)
R

(9)

in the vicinity of the jet.

Now the adjoint Green’s function problem can be recast into a wave scattering
problem with (9) as the incident wave. The sum of the scattered waves and the
incident wave satisfies the homogeneous form of equation (5). One advantage of
solving the wave scattering problem instead of the original problem is that there is
no source singularity (the delta function at the source) to deal with. This is especially
helpful when a computational aeroacoustics method is used.
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2.2. Axisymmetric jets

For axisymmetric jets, it would be natural to use a cylindrical coordinate system
(r, φ, x) with the jet axis as the x-axis; y is related to r and φ by y = r cosφ. By
replacing y in (9) with r cosφ, the incident plane wave in cylindrical coordinates
is obtained. This plane wave may be expanded as a sum of cylindrical waves (see
Magnus & Oberhettinger 1949). Hence

Ga
R→∞

(x, x0, ω) =

exp

(
−i

ω

a∞
(x cosΘ − R)

)
8π2ωa2

∞R

∞∑
m=0

(−i)m εmJm

(
ω sinΘ

a∞
r

)
cosmφ (10)

where ε0 = 1, εm = 2 for m > 1. Jm ( ) is the mth-order Bessel function.

Outside the jet, i.e. at r > R0 where u = 0, ρ = ρ∞, the scattered wave part of the
adjoint Green’s function, G(s)

a (x, x0, ω), can be found by separation of variables. Let

G(s)
a (x, x0, ω) =

exp

(
−i

ω

a∞
(x cosΘ − R)

)
8π2ωa2

∞R

∞∑
m=0

hm (r) cosmφ. (11)

The adjoint Green’s function in this region (r > R0) is related to G(s)
a (x, x0, ω) by

Ga (x, x0, ω) = Ga
R→∞

(x, x0, ω) + G(s)
a (x, x0, ω) . (12)

On substituting (12) into (7), it is straightforward to find that the equation for hm (r)
is

d2hm

dr2
+

1

r

dhm
dr

+

(
ω2 sin2 Θ

a2
∞

− m2

r2

)
hm = 0. (13)

The solution of (13) that satisfies the radiation boundary condition is H (1)
m(

(ω sinΘ/a∞)r
)

where H (1)
m ( ) is the mth-order Hankel function of the first kind.

Thus, outside the jet (r > R0) the adjoint Green’s function may be written in the
form,

Ga
r>R0

(x, x0, ω) =

exp

(
−i

ω
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)
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∞R
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r

)

+AmH
(1)
m

(
ω sinΘ

a∞
r

)]
cosmφ, (14)

where Am (m = 0, 1, 2, . . .) are arbitrary constants.

For r 6 R0, the adjoint Green’s function may be expanded in a Fourier Cosine
series in φ:

Ga
r6R0

(x, x0, ω) =

exp

(
−i

ω

a∞
(x cosΘ − R)

)
8π2ωa2

∞R

∞∑
m=0

fm (r) cosmφ. (15)

By substituting (15) into (5), rewritten in cylindrical coordinates, it is easy to find that
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the equation for fm (r) is

d2fm

dr2
+

 −4
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∞

 fm = 0. (16)

Unless a very special mean flow profile, u (r) and ρ (r), is chosen, (16) can only be
integrated by numerical methods. This equation has a regular singular point at r = 0.
For small r, a series solution of (16) that is bounded as r → 0 is

fm = amr
m + O

(
rm+2

)
. (17)

To find fm (r), one can integrate (16) numerically using (17) as a starting solution.
The numerical integration is to be continued until r = R0 is reached, whereby the
two unknown constants, Am of (14) and am of (17), are adjusted so that the radial
function and its derivative are equal to those of (14). This ensures that Ga (x, x0, ω)
and its derivatives are continuous. In this way, the adjoint Green’s function is found.
The accuracy of the solution is limited only by the accuracy of the numerical method
used to integrate equation (16).

For axisymmetric jets, it turns out, the Green’s function G (x, xs, ω) governed by
equation (3) can also be found by separation of variables after Fourier transform
in x is first performed. We will let xs = (rs, φs, xs) in cylindrical coordinates and
x = (R,Θ, φ) in spherical polar coordinates. In the limit R → ∞, it is easy to show
that the Green’s function G (x, xs, ω) (after the inverse Fourier transform integral has
been evaluated by the method of stationary phase) has the form,

G
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The functions g(i)
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 gm = 0 (19)
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Figure 6. Contour of integation in the complex r-plane deformed above the critical
point r = rc for velocity profiles with ū′ < 0.

in the range r 6 rs and r > rs respectively satisfying the conditions

g(i)
m

r→0

(r)→ O (rm) , g(0)
m

r→∞
(r)→ H (1)

m

(
ω sinΘ

a∞
r

)
.

It is to be noted that for high-speed jets both equations (16) for the adjoint Green’s
function and (19) for the direct Green’s function have a regular singular point at
r = rc where u (rc) (cosΘ/a∞) = 1. The correct treatment of this singularity is to
reformulate the problem as an initial value problem or to regard ω as the Laplace
transform with a small positive imaginary part as discussed by Tam (1975) and Tam
& Morris (1980). For a typical jet velocity profile with u′ < 0, equations (16) and
(19) are to be integrated over the deformed contour above the critical point (and the
branch cut) as shown in figure 6.

Extensive numerical computations of the adjoint Green’s function Ga (xs, x0, ω) of
(15) and the direct Green’s function G (x0, xs, ω) of (18) with x0 in the far acoustic
field for a number of realistic mean jet velocity and density profiles over a wide
range of Strouhal number St = fuj/D (where f, uj and D are the frequency, the fully
expanded jet velocity and diameter respectively) have been carried out. It has been
found, owing to the argument of the Bessel functions being large, that only the first 4
to 5 azimuthal modes are needed to provide an accuracy of 3 to 4 significant figures.
To the accuracy of the numerical integration used, the reciprocity relation (6) has been
found to be true for all the cases. This is so even for directions of radiation inside the
cone of silence. In carrying out the numerical computation the advantage of using
the adjoint Green’s function becomes very apparent. It takes only one integration of
(16) to provide the flow refraction information for all the sources located at various
radial distance from the jet axis. There is a great saving in computation effort.

3. The adjoint problem for non-parallel jet flows
3.1. The adjoint problem

For non-parallel jet flows, it is not possible, because of the presence of axial gradient
terms, to reduce the linearized Euler equations to a single equation. Under this
circumstance, it is found that it would be best to work with the first-order system
of equations. In this work, we are interested in the mean flow refraction effect on
the noise from fine-scale turbulence. Since fine-scale turbulence has no sources of
mass, it is, therefore, sufficient to consider only the Green’s functions associated
with fluctuating momentum sources. In other words, the governing equations to be
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solved are the linearized Euler and energy equations with a time-periodic source term,
(1/2π)δ (x− xs) e−iωt, added to the right-hand side of the momentum equations.

In Appendix A, the adjoint equations in the most general case including the
presence of solid surfaces are derived. For axisymmetric jets, the linearized Euler
equations with momentum source terms and their adjoint are somewhat simpler. For
convenience, we will use superscript (n) with n = 1, 2 or 3 to denote the Green’s
function variables corresponding to a time-periodic source in the radial, azimuthal
and axial momentum equations. A superscript (a) will be used to denote the adjoint
variables. Upon factoring out the time factor e−iωt (i.e. only the spatial part is retained)
these equations (equations for the Green’s functions) in cylindrical coordinates are

−iωρ(n) +
1

r

∂

∂r

[(
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where u(n), v(n) and w(n) are the velocity components in the x-, r- and φ-directions
respectively; δnm is the Kronecker delta.

The adjoint equations can be derived as in Appendix A. They are

−iωρ(a) − v ∂ρ
(a)

∂r
− u ∂ρ

(a)

∂x
+ v(a)

(
v
∂ v

∂r
+ u

∂ v

∂x

)
+ u(a)

(
v
∂ u

∂r
+ u

∂ u

∂x

)
= 0, (21a)

−iω ρ v(a) − ρ ∂ρ
(a)

∂r
− 1

r

∂

∂r

(
ρ v v(a)r

)
+ ρ v(a) ∂ v

∂r
− ∂

∂x

(
ρ u v(a)

)
+ ρ u(a) ∂ u

∂r
+ (1− γ) p(a) ∂ p

∂r
− γ p ∂p

(a)

∂r
= 0, (21b)

−iω ρw(a) − ρ

r

∂ρ(a)

∂φ
− 1

r

∂

∂r

(
ρ v rw(a)

)
− ∂

∂x

(
ρ uw(a)

)
+
ρ v w(a)

r
− γ p

r

∂p(a)

∂φ
= 0, (21c)
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−iω ρu(a) − ρ ∂ρ
(a)

∂x
+ ρ v(a) ∂ v

∂x
− 1

r

∂

∂r

(
ρ v ru(a)

)
− ∂

∂x

(
ρ u u(a)

)
+ ρ u(a) ∂ u

∂x
+ (1− γ) p(a) ∂ p

∂x
− γ p ∂p

(a)

∂x
= 0, (21d )

−iωp(a) − 1

r

∂

∂r

(
v(a)r

)
− 1

r

∂w(a)

∂φ
− ∂u(a)

∂x
− 1

r

∂

∂r

(
v p(a)r

)
− ∂

∂x

(
u p(a)

)
+ γp(a)

(
1

r

∂ (v r)

∂r
+
∂ u

∂x

)
=

1

2π
δ (x− x0) . (21e)

It is easy to establish (see Appendix A) that the reciprocity relation between the
original Green’s function variables and the adjoint variables are

p(1) (x0, xs, ω) = v(a) (xs, x0, ω) , (22)

p(2) (x0, xs, ω) = w(a) (xs, x0, ω) , (23)

p(3) (x0, xs, ω) = u(a) (xs, x0, ω) . (24)

It is worthwhile to mention that in the case of locally parallel flow jets with u = u (r),
v = w = 0, ρ = ρ (r) and p = p∞, the adjoint equations simplify to

−iω ρu(a) − ρ u ∂u
(a)

∂x
− γp∞

∂p(a)

∂x
= 0, (25a)

−iω ρ v(a) − ρ u ∂v
(a)

∂x
+ ρ u(a) ∂ u

∂r
− γp∞

∂p(a)

∂r
= 0, (25b)

−iω ρw(a) − ρ u ∂w
(a)

∂x
− γp∞

r

∂p(a)

∂φ
= 0, (25c)

−iωp(a) − u ∂p
(a)

∂x
−
[

1

r

∂

∂r

(
rv(a)

)
+

1

r

∂w(a)

∂φ
+
∂u(a)

∂x

]
=

1

2π
δ (x− x0) . (25d)

For x0 located outside the jet, it can easily be shown that (25) can be reduced to
a single equation for p(a). The adjoint problem can then be solved by the method of
separation of variables as discussed in § 2.2.

For the jet noise problem, interest is in the case where x0 (R, Θ, φ = 0) is in the far
field, i.e. R → ∞. Outside the jet, we have u = v = w = 0, ρ = ρ∞, p = p∞. Equation
(21) reduces to

ρ(a) = 0, v(a) =
ia2
∞
ω
∇p(a), (26)

∇2p(a) +
ω2

a2
∞
p(a) =

iω

2πa2
∞
δ (x− x0) . (27)

On following the steps from equation (7) to equation (10), the solution of (27) in
cylindrical coordinates may be written in the form

p(a)

R→∞
(x, x0, ω) =

−iω

8π2a2
∞R

exp

(
i
ω

a∞
(R − x cosΘ)

) ∞∑
m=0

(−i)m εmJm

(
ω sinΘ

a∞
r

)
cosmφ.

(28)

The corresponding adjoint velocity field given by (26) can also be written out explicitly
by simple differentiation.
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3.2. Time-domain formulation

An analytic solution of equation (21) for the adjoint Green’s function is unlikely to
be found. We propose to solve the set of equations by a numerical time marching
scheme. To do so, we will first recast the governing equations into a time-domain
problem. The time-domain adjoint variables, labelled with a tilde, are defined by

ṽ(a) (x, x0, t) = v(a) (x, x0, ω) e−iωt,

p̃
(a) (x, x0, t) = p(a) (x, x0, ω) e−iωt,

ρ̃
(a) (x, x0, t) = ρ(a) (x, x0, ω) e−iωt.

 (29)

The equations for the time-domain variables are obtained by replacing −iω in
equation (21) by ∂/∂t and adding e−iωt to the delta function on the right-hand side.
Outside the jet, the non-homogeneous solution of these equations is given by (28)
multiplied by e−iωt and the corresponding adjoint velocity components. We may
consider this non-homogeneous solution as the incident acoustic wave generated by
the source located at x0 (R, Θ, φ = 0) with R → ∞. The full solution then can be
divided into two parts, namely the incident wave solution plus a radiation solution
that satisfies the outgoing wave condition away from the jet. On expanding both
parts of the solution as Fourier series in the azimuthal variable φ, the full solution
may be written in the form


p̃

(a)

ũ
(a)

ṽ(a)

w̃
(a)

ρ̃
(a)


R→∞

=
eiωR/a∞

8π2R

∞∑
m=0

(−i)m εm





− iω

a2
∞
Jm

(
ω sinΘ

a∞
r

)
cosmφ

− iω cosΘ

a∞
Jm

(
ω sinΘ

a∞
r

)
cosmφ

ω sinΘ

a∞
J ′m

(
ω sinΘ

a∞
r

)
cosmφ

−m
r
Jm

(
ω sinΘ

a∞
r

)
sinmφ

0



× exp

(
−iω

(
x cosΘ

a∞
+ t

))
+


p̂m (r, x, t) cosmφ
ûm (r, x, t) cosmφ
v̂m (r, x, t) cosmφ
ŵm (r, x, t) sinmφ
ρ̂m (r, x, t) cosmφ


 . (30)

The first term on the right-hand side of (30) is the incident wave solution (the
inhomogeneous solution (28) and the corresponding adjoint velocity components).
The second term is the still unknown radiation solution.

By substituting (30) into the equations for the time-domain variables, we find that
the equations for (p̂m, ûm, v̂m, ŵm, ρ̂m) are

∂ ρ̂m
∂t
− v ∂ ρ̂m

∂r
− u ∂ ρ̂m

∂x
+

(
v
∂ v

∂r
+ u

∂ v

∂x

)
v̂m +

(
v
∂ u

∂r
+ u

∂ u

∂x

)
ûm = I1, (31a)

ρ
∂ ûm

∂t
− ρ ∂ ρ̂m

∂x
+ ρ

∂ v

∂x
v̂m−

1

r

∂

∂r
(ρ v r ûm)− u ∂

∂x
(ρ ûm)

− (γ − 1)
∂ p

∂x
p̂m−γ p

∂ p̂m
∂x

= I2, (31b)
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Figure 7. The computation domain in physical space.

ρ
∂ v̂m

∂t
− ρ ∂ ρ̂m

∂r
− v ∂

r∂r
(ρ vm r)−

∂

∂x
(ρ u v̂m) + ρ

∂ u

∂r
ûm

− (γ − 1)
∂ p

∂r
p̂m−γ p

∂ p̂m
∂r

= I3, (31c)

ρ
∂ ŵm

∂t
+
m

r
ρ ρ̂m−

∂ (ρ v ŵm)

∂r
− ∂

∂x
(ρ u ŵm) +

γ pm

r
p̂m = I4, (31d )

∂ p̂m
∂t
− 1

r

∂ (̂vm r)

∂r
− m

r
ŵm−

∂ ûm

∂x
− 1

r

∂ (v p̂m r)

∂r
− ∂

∂x
(u p̂m)

+γ p̂m

(
∂ v

∂r
+
v

r
+
∂ u

∂x

)
= I5. (31e)

The non-homogeneous terms I1, I2, I3, I4 and I5 on the right-hand side of (31) are
given in Appendix B. Equation (31) involves two space coordinates. A way to solve
these equations numerically by time marching to a periodic solution is discussed in
the next section.

4. Numerical implementation
The time-periodic solution of equation (31) that satisfies radiation boundary condi-

tion far away from the jet can be calculated numerically in a relatively straightforward
manner by a number of methods. Therefore, only the pertinent details of the numerical
computation are presented here.

One of the main reasons for reformulating the adjoint problem into a time marching
radiation problem (instead of a scattering problem) is that the solution of such a
problem inside the jet would not be greatly affected if part of the jet, away from
the location where the solution is sought, is cut off smoothly. This can easily be
understood by recalling that the effect of the mean flow on acoustic radiation is
primarily refraction. As long as the mean flow gradient is smooth, there is very little
backscattering. That is to say, there is an absence of back influence in the wave
radiation process. This is important, for all numerical solutions must use a finite
computation domain that requires the jet flow to be cut off in some way.

Figure 7 shows the computation domain in physical space. In our numerical
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Figure 8. Grid lines (ξ, η) in the physical domain inside and in the near field of the jet flow
(every second line is shown).

computation, the size of the computational domain excluding the two buffer regions
is 25D by 15D (xend = 25D, Lr = 15D) where D is the jet diameter. The mean flow
of the jet is calculated by the parabolized marching scheme of Thies & Tam (1996).
In the work of Thies & Tam, a modified k − ε model is used to simulate the effect of
turbulence. In the two buffer regions, the mean flow of the jet is artificially brought
to zero very gradually. The size of these regions, Lx, used in this work is allowed to
vary with frequency. In general, Lx is taken to be more than 10D.

In high-speed jets, there is a strong shear gradient in the jet mixing layer. Near
the nozzle exit the mixing layer is thin so that the shear gradient is especially large.
To ensure that enough mesh points are located inside the mixing layer to provide
adequate resolution, the physical domain is mapped into the computation domain by
means of a radial and an axial mapping,

η = η (r) , ξ = ξ (x) . (32)

A typical map of constant η and ξ lines is shown in figure 8. The radial mapping is
designed so that there are at least 20 mesh points in the jet mixing layer.

To solve equation (31) in the time domain, it is first rewritten in the (ξ, η)-
coordinates. Then it is discretized according to the dispersion-relation-preserving
(DRP) time marching scheme (see Tam & Webb 1993 and Tam 1995). A seven-point
central difference stencil with optimized stencil coefficients is used to approximate
spatial derivatives. A four-level optimized finite difference scheme is used for time
marching. Because of the existence of strong shear gradients in the mixing layer
of the jet, spurious numerical waves are expected to be generated as the sound
waves pass through the region. To eliminate these spurious numerical waves, artificial
damping terms (see Tam, Webb & Dong 1993 and Tam 1995) are added to each of
the equations. The mesh Reynolds number, R∆x = a∞∆x/νa, where νa is the artificial
numerical viscosity, ∆x is the mesh size in the physical space (∆x = ∆ξ/|∂ξ/∂x|), is
taken to be 10. In the interior of the computation domain, a seven-point damping
stencil is used. Near the jet axis, the value of the inverse mesh Reynolds number is
increased to 0.2. This value is transitioned to the general value of 0.1 by means of a
Gaussian curve with a half-width of 3 mesh spacings.

Along the boundary ABCD in figure 7, a set of radiation/outflow boundary
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conditions for equation (31), derived in the same way as Tam & Webb (1993), are
used. The purpose of the radiation boundary condition is to allow the sound waves to
exit the computation domain with minimum reflection. Radiation/outflow boundary
conditions, which are based on the asymptotic solutions of the governing equations,
have been found by Hixson, Shih & Mankbadi (1995) to perform better than radiation
boundary conditions based on the method of characteristics or Fourier expansion.
Equation (31) is singular at the jet axis. Numerical methods cannot handle such
singularity. In the present work, the singular terms are first replaced by their formal
limits as r → 0 before discretization. For instance, the term ṽ(a)/r in (31e) becomes in
the limit r → 0

lim
r→0

ṽ(a)

r
=
∂ ṽ(a)

∂r

∣∣∣∣∣
r=0

.

Thus a difference approximation of ∂ ṽ(a)/∂r at r = 0 is used instead of ṽ(a)/r.

As mentioned above, one reason for incorporating the buffer regions in the com-
putation domain, see figure 7, is to provide space to reduce the mean flow to zero
gradually. It turns out that the buffer regions are also used for another important
function. It is well-known that a jet is subjected to Kelvin–Helmholtz instability.
This is a convective instability. That is, the unstable waves will propagate away
from the region where they were generated. The time-domain adjoint equations (31)
support the adjoint instability waves that have the same growth and propagation
characteristics as the original Kelvin–Helmholtz instability. Computationally, it is
important not to exite these instability waves for otherwise they would overwhelm
the numerical solution. The forcing function of (31) is the incident acoustic wave.
Its wavelength is much longer than the instability wave at the same frequency. Thus,
the time-steady forcing would not excite the adjoint instability wave unless in regions
of rapid changes in the mean flow. It is found that even though the mean flow is
reduced to zero smoothly in the buffer regions, instability waves are, nevertheless,
excited. To eliminate these waves immediately, constant damping terms are added to
equation (31) in the buffer regions. The magnitude of these terms is adjusted so that
the excited instability waves are damped out before propagating out of these regions.

In using the present time marching numerical method, the computation starts with
zero initial conditions. The transient solution either propagates out of the computation
domain or is being damped out in the buffer regions. In all the cases considered, the
computation is continued until a time-periodic solution is attained.

The finite difference computer code that solves (31) has been validated by applying
it to locally parallel flow jets and comparing the numerical results with the parallel
flow jet solutions. For parallel flow jets, the adjoint is given by the solution of
(25). This set of equations can be reduced to an ordinary differential equation by
the method of separation of variables. The ordinary differential equation can be
integrated numerically to high precision by using very small integration steps. We
may regard this solution as nearly exact. Figure 9 shows a comparison of the real
and imaginary part of p(a) (x, x0, ω) for a Mach 0.9 jet at a temperature ratio of 2.0 as
calculated by the time marching code and the nearly exact parallel flow solution. The
mean flow profile used corresponds to that at x/D = 6 of a divergent jet. The Strouhal
number, St = fD/uj , is 0.3. As can be seen there is excellent agreement between the
numerically exact parallel flow solution and the time-domain finite difference solution.
Extensive comparisons similar to figure 9 have been carried out over a range of jet
Mach number, temperature ratio and axial location of the jet. Good agreements



164 C. K. W. Tam and L. Auriault

0.05

0.04

0.03

0.02

0.01

0

R
e[

R
 p

(a
) (

x,
 x

0,
 x

)]

1 2

(a)

0.02

0.01

0

–0.02
0

Im
[R

 p
(a

) (
x,

 x
0,

 x
)]

1 2

(b)

r/D

–0.01

Figure 9. Numerical solution of (a) the real part and (b) the imaginary part of p(a)(x, x0, ω).
x = (r, φ = 90◦, x = 6D), x0 = (R = 100D,Θ = 60◦, φ = 0) Mj = 0.9, Tr/T∞ = 2.0, St = 0.3.
———–, Finite difference solution; · · · · · · · · , separation of variables solution.

comparable to that of figure 9 are found. This provides confidence in the accuracy of
our finite difference time marching scheme.

5. Numerical results
It is obvious that there is a large disparity in the level of effort needed to carry out

a parallel flow Green’s function calculation and the corresponding fully non-parallel
flow calculation. The former requires relatively little computation time. For this
reason, it would be important and useful to find out how accurate the results based
on the locally parallel flow approximation are. To clarify this point, we carried out
an extensive parametric study comparing the directivities calculated using both the
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Figure 10. Mean velocity profiles of a jet: (a) core region, (b) developed region.

locally parallel flow approximation and the non-parallel flow finite difference method.
In all these computations, the jet mean flows were determined by using the k − ε
turbulence model with modified coefficients as discussed by Thies and Tam (1996).
As shown by Thies & Tam, the k − ε turbulence model with modified coefficients
can provide reliable mean jet flow velocity profiles over a wide range of jet Mach
numbers and jet to ambient temperature ratios. It is known that the mean flow profile
of a jet can be closely approximated by the following functions characterized by two
parameters (see figure 10).

In the core region

u =


uj, r < h

uj exp

[
−(ln 2)

(
r − h(x)

b(x)

)2
]
, h 6 r,

(33)

where h(x) is the radius of the uniform core and b(x) is the half-width of the annulus
mixing layer.

In the developed region

u = uc(x) exp

[
−(ln 2)

(
r

b(x)

)2
]
, (34)

where uc(x) is the centreline velocity and b(x) is the half-width of the velocity profile.
In an earlier work, Troutt & McLaughlin (1982) successfully used (33) and (34) to
collapse their extensive jet mean velocity measurements. Tam & Burton (1984) and
others, on the other hand, used these profiles for instability waves and jet noise
calculations. Here we found that these profiles are in good agreement with those
calculated numerically by the k − ε turbulence model.

Two general results have emerged from the parametric study. First is that the cone
of silence around the jet flow direction is strongly affected by the frequency of the
acoustic waves under consideration. At low frequencies, the existence of a cone of
silence for the radiated sound is not always apparent. On the other hand, at high
frequencies, a well-defined cone of silence is, invariably, present. Second is that outside
the cone of silence, the directivity given by the locally parallel flow approximation is
sufficiently reliable that we recommend its usage whenever possible. But inside the
cone of silence, caution must be exercised when such an approximation is employed.
To illustrate this point, consider a Mach 0.9 jet at Tr/T∞ = 2.0. The jet is supersonic
relative to ambient sound speed near the nozzle exit. But sufficiently far downstream,
with the decrease in velocity, the mean flow velocity is subsonic. Thus for such
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Figure 11. Comparisons between directivities of p(a)(xs, x0, ω) calculated using parallel and
non-parallel jet mean flow. Mj = 0.9, Tr/T∞ = 2.0, uc/uj = 0.84, h/D = 0, b/D = 0.65. (a)
St = 0.1, (b) St = 0.3, (c) St = 0.6. xs = (r = 0, x = 8D, φ = 0◦); x0 = (R = 100D,Θ, φ = 0◦).
———–, Parallel jet mean flow; o, non-parallel jet mean flow.

downstream locations, there is no critical direction of radiation (see the paragraph
below) and the locally parallel flow solution can be calculated in a straightforward
manner. Figure 11 shows the directivity of sound radiation by a point source located
at the jet axis at 8 diameters downstream where the jet velocity is less than the
ambient sound speed. At low Strouhal number, figure 11(a), the directivity is nearly
flat. At medium to high Strouhal number, figures 11(b) and 11(c), a well-developed
cone of silence is evident. In these figures, the full line is the result of the locally
parallel flow solution. The circles are the non-parallel numerical solution. Outside the
cone of silence, the two solutions are nearly identical. Inside the cone of silence, close
to the jet axis, say at θ = 20◦, the error in using the locally parallel flow assumption
is quite large; as large as 9 dB at moderate to high Strouhal numbers. The reason
why large error can occur when the locally parallel flow approximation is used for
small radiation angle is easy to understand. Physically, at small radiation angle, the
sound waves have to propagate over a long distance through the mean flow before
leaving a parallel flow jet. Such, however, is not the case for a real divergent jet.

At locations closer to the nozzle exit, where a part of the jet mean flow is supersonic
relative to ambient sound speed, a critical point exists in the locally parallel flow
equations as discussed in § 2.2. The critical direction of radiation, θc, is given by

θc = cos−1

[
a∞

u(rc)

]
, (35)
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Figure 12. As figure 11 but uc/uj = 1.0, h/D = 0.18, b/D = 0.38.

where rc is the radial location of the critical layer. The existence of the critical point
tends to further downgrade the accuracy of the locally parallel flow approximation.
To clarify this, let us consider the mean velocity profile of figure 10(b). The jet velocity
from the centreline to a radial location r = ra is supersonic relative to the ambient
sound speed. But for r > ra, the jet velocity is subsonic. Now according to (35) rc, the
location of the critical layer, can be anywhere from r = 0 to ra. Its precise location,
of course, depends on the direction of radiation. Because of this, two cases arise
depending on whether the source point is located inside or outside ra. If the source
point is located outside ra then the critical point rc cannot be located at the same
point. In this case, the locally parallel flow approximation together with the contour
deformation method (deformed around the critical point rc) would yield a continuous
directivity curve. As an example, let us return to the Mach 0.9 jet at temperature
ratio 2.0. At four diameters downstream, the jet centreline velocity is faster than the
ambient sound speed. However, at r = 0.5D the mean flow velocity is subsonic with
respect to ambient sound velocity. Figure 12 shows the calculated directivities for the
noise source located at r = 0.5D (r > ra) using the locally parallel flow approximation
(full line) and the non-parallel flow numerical approach (circles). It can be seen that
there are substantial discrepancies inside the cone of silence both at low and high
Strouhal numbers. It is to be noted that the nature of the errors here is not the same
as that of figure 11. They are due primarily to the existence of a critical point in the
governing equations.

Now if the noise source is located closer to the jet axis where r is less than ra,
the locally parallel flow approximation encounters further difficulty. There will be a
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Figure 13. As figure 11 but xs = (r = 0.25D, x = 4D,φ = 0◦).

direction of radiation for which the critical point rc coincides with the source point.
Under this circumstance, the solution cannot reach the source point by the contour
deformation method (the contour is deformed around it). What this means is that the
locally parallel flow approximation fails to provide a solution for the critical direction
of radiation. As a result, there is a missing direction in the directivity curve. Figure
13 shows the directivity curve for a source located at x = 4D, r = 0.25D (r < ra)
calculated by the locally parallel flow method and the non-parallel flow numerical
method. The directivity of the parallel flow calculation behaves well outside the cone
of silence but exhibits the features of a discontinuity around the missing critical
direction. On comparing with the non-parallel flow results, the error is very large
and unacceptable. We strongly recommend against the use of the locally parallel flow
model for radiation directions for which rc is close to the source point.

6. Summary and discussion
In this paper, a new way to determine the mean flow refraction effect on sound

radiated by localized sources inside a jet using the adjoint Green’s function and the
reciprocity relation is proposed. Significant savings in computational effort can be
realized by adopting this new approach. Most previous works on this subject are
based on the locally parallel flow approximation. The fully non-parallel flow effects
can, however, be included in the present methods by calculating the adjoint Green’s
function using computational aeroacoustics algorithms. In the adjoint problem, the
source point is not inside the jet. Thus, it would not be necessary for the time
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marching numerical computation to resolve the source singularity. This is important
in ensuring an accurate numerical solution.

Numerical results obtained in the present investigation indicate that the locally
parallel flow approximation, widely used in the literature, can provide accurate direc-
tivity results outside the cone of silence. Caution, however, must be invoked when
applying this approximation to radiation directions inside the cone of silence and
especially for angular directions close to the jet axis.

Although in this work we have confined our study primarily to axisymmetric jets, it
is clear that the reciprocity principle can also be used for non-axisymmetric jets. For
non-axisymmetric jets, a full three-dimensional numerical computation is necessary.
This, inevitably, would be very involved and costly. But if the locally parallel flow
approximation is deemed adequate, then only a much simpler two-dimensional time-
domain computation would be required. Such calculations are feasible using present
day computers.

This work was supported by the NASA Lewis Research Center Grant NAG 3-1683.

Appendix A. Reciprocity relations for the linearized Euler equations
Our primary concern here is the mean flow refraction effect on noise from fine-scale

turbulence in jets. Since fine-scale turbulence does not introduce extra mass into the
flow, we will only consider Green’s function for time-periodic momentum sources
(i.e. a term (1/2π)δ (x− x0) e−iωt is added to the momentum equations). Attention
will be directed to the spatial part of the time-periodic Green’s function. We will
use superscript (n), n = 1, 2, 3 to denote the Green’s function corresponding to a
momentum source term added to the x, y, and z momentum equations respectively.
Upon factoring out e−iωt, the linearized Euler and energy equations in Cartesian
tensor subscript notation are

−iωρ(n) +
∂

∂xj

(
ρ v

(n)
j + ρ(n) vj

)
= 0, (A 1)

−iω ρ v(n)
i − iωρ(n) vi +

∂

∂xj

(
ρ vi v

(n)
j + ρ v

(n)
i vj +ρ(n) vi vj

)
+
∂p(n)

∂xi
=

1

2π
δniδ (x− xs) ,

(A 2)

−iωp(n) +
∂

∂xj

(
p v

(n)
j + p(n) vj

)
+ (γ − 1) p

∂v
(n)
j

∂xj
+ (γ − 1) p(n) ∂ vj

∂xj
= 0, (A 3)

where δni is the Kronecker delta.
Without loss of generality, we will assume that there are solid bodies with surfaces

S1 and S2 in the domain as shown in figure 14. On these surfaces, the boundary
conditions are

vj nj = 0, v
(n)
j nj = 0 (A 4)

where nj is the outward pointing unit normal of the surfaces.
To find the equations and boundary conditions for the adjoint Green’s function,

let us multiply (A 1), (A 2) and (A 3) by functions ρ(a) (x, x0, ω), v(a) (x, x0, ω) and
p(a) (x, x0, ω) respectively and integrate over the volume V , see figure 12, external to
all the solid surfaces. Upon adding the three equations together and after some simple
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S2

–nj

S1

S3

nj

V

Figure 14. Schematic diagram showing the presence of solid bodies with bounding surfaces
S1 and S2 in the physical domain.

algebraic manipulation, it is easy to derive the following equation:∫∫∫
V

{[
−iωρ(a) − vj

∂ρ(a)

∂xj
+ vj v

(a)
i

∂ vi

∂xj

]
ρ(n)

+

[
− ρ ∂ρ

(a)

∂xi
− iω ρ v(a)

i + ρ v
(a)
j

∂ vj

∂xi

− ρ vj
∂v

(a)
i

∂xj
− p ∂p

(a)

∂xi
− (γ − 1)

∂

∂xi

(
p p(a)

) ]
v

(n)
i

+

[
−iωp(a) −

∂v
(a)
j

∂xj
− vj

∂p(a)

∂xj
+ (γ − 1) p(a) ∂ vj

∂xj

]
p(n)

}
dV

+

∫∫∫
V

∂

∂xj

[(
ρ v

(n)
j + ρ(n) vj

)
ρ(a) −

(
ρ v

(n)
j + ρ(n) vj

)
vi v

(a)
i

+
(
ρ vi v

(n)
j + ρ v

(n)
i vj +ρ(n) vi vj

)
v

(a)
i + p(n)v

(a)
j + p(n) vj p

(a) + γv
(n)
j p p(a)

]
dV

=
δni

2π
v

(a)
i (xs, x0, ω) . (A 5)

We will now choose the functions ρ(a), v(a)
i and p(a) to be the solution of the adjoint

equations defined below:

−iωρ(a) − vj
∂ρ(a)

∂xj
+ vj v

(a)
i

∂ vi

∂xj
= 0, (A 6)

−iω ρ v(a)
i − ρ

∂ρ(a)

∂xi
+ ρ v

(a)
j

∂ vj

∂xi
− ρ vj

∂v
(a)
i

∂xj
− p ∂p

(a)

∂xi
− (γ − 1)

∂ p p(a)

∂xi
= 0, (A 7)

−iωp(a) −
∂v

(a)
j

∂xj
− vj

∂p(a)

∂xj
+ (γ − 1) p(a) ∂ vj

∂xj
=

1

2π
δ (x− x0) . (A 8)

By means of (A 6) to (A 8), the first integral of (A 5) can be evaluated. It is equal to
(1/2π)p(n) (x0, xs, ω). The second integral of (A 5), denoted as J2, can be casted into
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a surface integral by means of the divergence theorem. By choosing the boundary
condition on the solid surface for the adjoint v(a)

i to be

v
(a)
i ni = 0, (A 9)

It is easy to find, together with boundary condition (A 4), that the integrand of the
surface integral over the solid surfaces is zero. Hence only the outer surface integral
over surface S3 remains. That is,

J2 =

∫∫
S3

[(
ρ v

(n)
j + ρ(n) vj

)
ρ(a) −

(
ρ v

(n)
j + ρ(n) vj

)
vi v

(a)
i

+
(
ρ vi v

(n)
j +ρ v

(n)
i vj+ρ

(n) vi vj

)
v

(a)
i +p(n)v

(a)
j +p(n) vj p

(a) +γv
(n)
j p p(a)

]
nj dS. (A 10)

Now let us push the surface S3 to infinity. We note that the mean flow of the jet
may be created by mass or momentum sources so that for large R, vj = O

(
1/R2

)
.

Also v
(n)
j are the velocity components of the acoustic field, thus v(n)

j = O
(
1/R

)
as

R →∞. By means of (A 6) to (A 8) it can be shown that the adjoint solution has the
following asymptotic behaviour:

R →∞, p(a), v
(a)
j = O

(
1

R

)
, ρ(a) = O

(
1

R2

)
. (A 11)

By means of the asymptotic behaviour of the original and the adjoint solutions, it
is readily shown that the integrand of (A10) is of the order of 1/R3 as R → ∞.
Therefore, in the limit S3 → ∞, J2 goes to zero. Equation (A5) thus leads to the
following reciprocity relation:

p(n) (x0, xs, ω) = δniv
(a)
i (xs, x0, ω) . (A 12)

That is, the pressure Green’s functions (n = 1, 2, 3) of the linearized Euler equations
can be found from the adjoint velocity field. (Note: the adjoint velocity does not have
the same meaning as physical velocity.)

Appendix B. Non-homogeneous terms
The non-homogeneous terms of equation (31) are

I1 =

[
−
(
v
∂ v

∂r
+ u

∂ v

∂x

)
ω sinΘ

a∞
J ′m

(
ω sinΘ

a∞
r

)
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v
∂ u

∂r
+ u

∂ u

∂x

)
iω cosΘ

a∞
Jm

(
ω sinΘ

a∞
r

)]
exp

(
iω

(
x cosΘ

a∞
− t
))

,
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[
ω cosΘ

(
ρ−γ p

a2
∞

)
− i u cosΘ

(
∂ ρ

∂x
− ρ iω cosΘ

a∞

)

− i cosΘ

r

∂ (ρ v r)

∂r
− (γ − 1)

i

a∞

∂ p

∂x

]
ω

a∞
Jm

(
ω sinΘ

a∞
r

)

−
(
ρ
∂ v
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+ i ρ

v ω cosΘ

a∞

)
ω sinΘ

a∞
J ′m

(
ω sinΘ
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r

)]
exp

(
iω

(
x cosΘ

a∞
− t
))

,
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Figure 15. Location of noise sources at the (x = 0)-plane.
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{(
ρ
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exp
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. (B 1)

Appendix C. Multiple sources – an example
A concrete example involving multiple sources is provided in this Appendix to

illustrate the great savings in computation that can be realized by using the reciprocity
relation and the adjoint Green’s function. We will consider a parallel flow jet with a
velocity profile given by (34) as shown figure 10(b). The centreline Mach number (Mj)
is taken to be 0.9 and the jet to ambient temperature ratio is 1.0. The half-width of
the jet velocity profile will be labelled as b, the characteristic length of the problem.
Five axial momentum sources (see equation (20)), all located on the (x = 0)-plane,
are distributed in the (y, z)-plane as shown in figure 15. Let (rj , φj , 0), j = 1, 2, . . . , 5,
be the cylindrical coordinates of the source and Aj be the corresponding weighting
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Figure 16. Far-field pressure distribution generated by five axial momentum sources inside a
parallel jet. Mj = uc/aj = 0.9, Tr/T∞ = 1.0, fb/uc = 0.3, x = (R = 100b,Θ, φ = 0◦). ————– ,
Calculation using the direct Green’s function; · · · · · · · · , calculation using the adjoint Green’s
function (indistinguishable).

factor. The numerical values chosen for the example are

rj = b, φj = (j − 1)
2π

5
, Aj = ρ∞a

2
∞M

2
j b

2j × 10−6, j = 1, 2, . . . , 5.

The radiated sound field at Strouhal number fb/uc = 0.3 on the (φ = 0)-plane is
calculated in two ways. First, the direct Green’s function of equation (20) is solved
by separation of variables for each source. That is, the calculation is repeated five
times. They are summed to provide the combined field. Second, the adjoint equation
(25) is solved. The radiated pressure field is determined by (24). In this approach,
one calculation is needed. Figure 16 shows the calculated directivities of the radiated
sound pressure intensity. Both approaches give the same directivity up to 3 significant
figures. However, the direct Green’s function method takes about five times more
computation.
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